
Chapter 13: Java Modules and the JPMS (Java Platform
Module System)
Introduction

The modularization of Java applications was introduced with Java 9 through the Java
Platform Module System (JPMS). It was one of the most significant changes to the Java
language since generics in Java 5. JPMS offers a powerful mechanism to divide code into
reliable, reusable, and secure components known as modules. These modules define
what they expose to other modules and what they encapsulate. JPMS aims to make
applications more scalable, maintainable, and performant by organizing code into
explicit, well-defined modules.

This chapter explores Java Modules, their structure, configuration, usage, benefits, and
their role in building robust enterprise applications.

13.1 What is a Module in Java?

A module is a self-contained unit of code that groups together related packages and
resources. It specifies:

• Which packages it exports

• Which other modules it requires

Characteristics of a Java Module:
• It has a name.

• It explicitly states dependencies on other modules.

• It encapsulates its internal packages.

13.2 Why JPMS Was Introduced

Before Java 9:

• Java used JAR files to package and distribute code.

• There was no true module system; dependency conflicts (e.g., “JAR Hell”) were
common.

• No reliable way to hide internal APIs or detect conflicts between libraries.

JPMS Solves:
• Reliable configuration

• Strong encapsulation

• Scalable platform (small runtime for IoT)

• Better security and maintainability

13.3 Structure of a Module

Each module has a module-info.java file at its root which acts as a module descriptor.

Syntax:
javaCopy codemodule com.example.mylibrary {
 requires java.sql;
 exports com.example.mylibrary.api;
}

Keywords:
• module: declares the module name.

• requires: declares dependency on another module.

• exports: makes a package accessible to other modules.

13.4 Components of Module System

1. Module Declaration (module-info.java)

Defines the module and its dependencies.

Example:

javaCopy codemodule com.myapp {
 requires java.logging;
 requires com.utils;
 exports com.myapp.api;
}

2. requires Directive

Tells the compiler and runtime that a module depends on another module.

Types:

• requires: Compile-time and runtime dependency.

• requires transitive: Exposes the dependency to modules that depend on your
module.

• requires static: Used only at compile time.

3. exports Directive

Defines which packages are available to other modules.

javaCopy codeexports com.myapp.api;

4. opens Directive

Opens a package for reflection at runtime (important for frameworks like Spring).

javaCopy codeopens com.myapp.internal;

5. uses and provides Directives

Used for ServiceLoader-based dependency injection.

javaCopy codeuses com.myapp.MyService;

provides com.myapp.MyService with com.myapp.impl.MyServiceImpl;

13.5 Types of Modules
Type Description

Application
Module

Modules you write for your application.

Automatic Module A regular JAR placed on the module path without a module-
info.java.

Unnamed Module Classes loaded from the classpath, not explicitly modularized.

Platform Modules Built-in Java modules (e.g., java.base, java.sql, java.xml).

13.6 Java Platform Modules

Java itself is modularized. Some standard modules include:

• java.base: Contains essential classes (automatically required).

• java.sql: JDBC API.

• java.logging: Java Logging API.

• java.xml: XML processing.

You can list all modules via:

bashCopy codejava --list-modules

13.7 Creating and Using Modules – Example

Folder Structure:
arduinoCopy codesrc/
├── com.myapp/
│ ├── module-info.java
│ └── com/myapp/Main.java
├── com.utils/
│ ├── module-info.java
│ └── com/utils/Utils.java

Sample module-info.java for com.myapp:
javaCopy codemodule com.myapp {
 requires com.utils;
 exports com.myapp;
}

Sample module-info.java for com.utils:
javaCopy codemodule com.utils {
 exports com.utils;
}

Compile:
bashCopy codejavac -d out --module-source-path src $(find src -name "*.java")

Run:
bashCopy codejava --module-path out -m com.myapp/com.myapp.Main

13.8 Benefits of JPMS
• Reliable Configuration: No more JAR conflicts or classpath issues.

• Strong Encapsulation: Prevents unwanted access to internal APIs.

• Improved Performance: JVM can optimize startup and memory use.

• Security: Explicit access control reduces attack surfaces.

• Maintainability: Clear boundaries and dependencies.

13.9 Limitations and Challenges
• Steep learning curve for legacy developers.

• Compatibility issues with non-modular libraries.

• Frameworks like Spring require opens for reflection-based features.

• Not all existing tools and libraries support modules perfectly.

13.10 JPMS vs OSGi
Feature JPMS OSGi

Runtime System Static at compile time Dynamic at runtime

Complexity Simpler Complex

Adoption Higher (post-Java 9) Limited to niche areas

Focus Compile-time modularity Runtime component model

13.11 Migration from Non-Modular to Modular Code

Steps:
1. Identify and isolate modules in your codebase.

2. Create module-info.java for each module.

3. Move third-party libraries to the module path.

4. Use requires, exports, opens as needed.

5. Refactor reflective access with opens.

Summary

In this chapter, we explored Java Modules and the Java Platform Module System (JPMS),
a key feature introduced in Java 9 to enhance modularity, encapsulation, and
maintainability. JPMS allows developers to break monolithic applications into well-
defined modules with controlled dependencies and clear boundaries. We learned about
the structure of modules, the module-info.java descriptor, directives like requires,
exports, and opens, and how to create and use modules in practice. Despite some
challenges and migration concerns, JPMS provides a solid foundation for scalable and
secure Java applications.

	Chapter 13: Java Modules and the JPMS (Java Platform Module System)
	Introduction
	13.1 What is a Module in Java?
	Characteristics of a Java Module:

	13.2 Why JPMS Was Introduced
	JPMS Solves:

	13.3 Structure of a Module
	Syntax:
	Keywords:

	13.4 Components of Module System
	1. Module Declaration (module-info.java)
	2. requires Directive
	3. exports Directive
	4. opens Directive
	5. uses and provides Directives

	13.5 Types of Modules
	13.6 Java Platform Modules
	13.7 Creating and Using Modules – Example
	Folder Structure:
	Sample module-info.java for com.myapp:
	Sample module-info.java for com.utils:
	Compile:
	Run:

	13.8 Benefits of JPMS
	13.9 Limitations and Challenges
	13.10 JPMS vs OSGi
	13.11 Migration from Non-Modular to Modular Code
	Steps:

	Summary

